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Abstract. Terrestrial microwave links are increasingly being used to estimate path-averaged precipitation by determining the

attenuation caused by rainfall along the link path, mostly with commercial microwave links from cellular telecommunication

networks. However, the temporal resolution of and method to derive these rainfall estimates is often determined by the tem-

poral sampling strategy that is employed by the mobile network operators. Currently, the links are most often sampled at a

temporal resolution of 15 minutes with a recording of the minimum and maximum values, while more recently also a form of5

instantaneous sampling with possible intervals up to 1 s has been set up. For rainfall research purposes, often high temporal

resolutions in combination with averaged values are preferred. However, it is uncertain how these various temporal sampling

strategies affect the estimated rainfall intensity. Here we aim to understand how temporal sampling strategies affect the mea-

sured rainfall intensities using microwave links. To do so, we use data from three collocated microwave links, two 38 GHz

and one 26 GHz, sampled at 20 Hz and covering a 2.2 km path over the city of Wageningen, the Netherlands. We aggregate10

the microwave link power levels to multiple time intervals (1 s to 60 min) and use a mean, instantaneous, and minimum and

maximum value to characterize the signal. Based on the aggregated data, we compute rainfall intensities and compare these

with 20 Hz rainfall estimates, such that we isolate errors and uncertainties caused by the sampling strategies from instrumental

effects, such as different biases between instruments and representativeness errors. In general, our results show that for all sam-

pling strategies an increase in sampling time interval reduces the performance of the rainfall estimates, which especially holds15

for the instantaneous sampling strategy. Even the mean sampling strategy, which generally performs best of all strategies, is

sensitive to this reduction in temporal resolution and could lead to significant underestimations. In this, the non-linear relation

between attenuation and rainfall intensity seems to play an important role. The min-max sampling strategy is mostly prone

to minor underestimations or large overestimations of the path-averaged rainfall intensities. Moreover, our results, including

a comparison with theoretical events, show that the attenuation due to wet antennas not only affects the comparison between20

the rainfall estimates obtained with a microwave link and another reference instrument, but also has a significant influence on

the rainfall retrieval algorithm. Overall, this study demonstrates the effect a selected sampling strategy can have on rainfall

intensity estimates using (commercial) microwave links.
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1 Introduction

Accurate rainfall measurements are essential in many fields of application. For example, water resources management uses25

rainfall measurements for flood forecasting (e.g., Maggioni et al., 2018), a major part of global agriculture is dependent on rain

(Molden, 2013) and urban runoff estimates are highly dependent on rainfall estimates (Berne et al., 2004; Cristiano et al., 2017;

Niemczynowicz, 1988). Overall, these practices would benefit from increasing the spatial and temporal resolution of rainfall

measurements.

Currently, dedicated rainfall measurement techniques have some important drawbacks. Ground-based point measurement30

devices, such as rain gauges or disdrometers, are often able to capture the temporal dynamics of precipitation, but do not rep-

resent the spatial character of precipitation (e.g., Berne et al., 2004; Sun et al., 2018). Moreover, the placement of the devices

can decrease the measurement performance, for example through the wind causing an undercatch (e.g., Pollock et al., 2018;

Raupach and Berne, 2015). Weather radars do provide the desired spatial rainfall information combined with a sufficient tem-

poral resolution. However, radar measures higher up in the atmosphere and indirectly retrieves rainfall introducing uncertainty35

about the actual amount of precipitation near the surface (Berne and Krajewski, 2013). Additionally, both methods are not

available on a global scale, due to costs and maintenance. On a global scale, including the oceans, satellites provide rainfall

information, but for hydrometeorological applications these can come at a too low spatial and temporal resolution combined

with too high uncertainty and bias, partly dependent on, for example, terrain complexity, aridity and season (Maggioni et al.,

2018; Rios Gaona et al., 2017).40

Another source of spatial rainfall estimates could come from telecommunication networks, a so-called opportunistic sensing

technique. In these networks, commercial microwave links (CMLs) are deployed, of which the rain-induced attenuation of the

electromagnetic signal can be used to compute rainfall intensities (e.g., Chwala and Kunstmann, 2019; Messer et al., 2006; Lei-

jnse et al., 2007a; Uijlenhoet et al., 2018). These CMLs are near-surface radio connections used in cellular telecommunication

networks. Thus as a major advantage, the infrastructure required to spatially measure rainfall with these CMLs already exists.45

Furthermore, the rainfall estimates obtained with a single link are representative for the entire path, overcoming the drawbacks

of point measurements. As shown by de Vos et al. (2018), CMLs are especially useful when considering aggregation scales

that are too large for point measurements.

Moreover, rainfall measurements by a CML network can be beneficial in combination with other rainfall measurements and

are increasingly being used in hydrometeorological applications. For example, Brauer et al. (2016) used CML rainfall estimates50

as input in a rainfall-runoff model for lowland catchments and showed, in general, that these rainfall estimates are very suitable

as input for hydrological applications. van het Schip et al. (2017) showed the complimentary potential of CML and satellite data

by determining wet and dry periods using the satellite data, while Hoedjes et al. (2014) proposed to use this for a conceptual

flash flood early warning system in Kenya. Fencl et al. (2013) and Pastorek et al. (2023) used CMLs as input data for an urban

drainage model and demonstrated the benefits of the relatively high spatial resolution on these models. Also, Imhoff et al.55

(2020) showed that nowcasting rainfall events could be performed using CML networks, with good results when compared to

weather radar precipitation estimates and nowcasts. This is especially promising for regions without weather radars. Overall,
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this shows the potential of using CML networks for rainfall measurements in many societally relevant hydrometeorological

applications.

In general, the attenuation of a microwave link signal can be converted to rainfall intensity using (Atlas and Ulbrich, 1977;60

Olsen et al., 1978):

R = akb, (1)

where R is the rainfall intensity (mm h-1), k the specific attenuation (dB km-1) and a and b are coefficients depending on both

signal characteristics (e.g., frequency and polarization) and precipitation characteristics (e.g., drop size distribution) (Jameson,

1991). For frequencies typically applied in CML networks, b is close to 1, so that signal attenuation and rainfall intensity65

are nearly proportional. Messer et al. (2006) and Leijnse et al. (2007a) showed that the commercially-employed microwave

links could also be used to measure rainfall intensities, in Israel and the Netherlands, respectively. Since then, studies have

been performed in Europe (Czech Republic, France, Germany, Italy, Luxembourg, Sweden and Switzerland), Africa (Burkina

Faso, Kenya, Nigeria, Papua New Guinea), South America (Brazil), Asia (Lebanon, Pakistan and Sri Lanka) and Australia (see

Chwala and Kunstmann, 2019, for a partial overview). Several open-source packages exist for rainfall retrieval (and mapping)70

from CML data. One of these is RAINLINK (Overeem et al., 2016b). Chwala et al. (2016) have developed an algorithm to

extract real-time data from CML networks and based on this data determined spatial rainfall estimates (Graf et al., 2020). Habi

and Messer (2021) used a recurrent neural network to determine rainfall intensities using CML network data.

However, using these CML networks to estimate precipitation, the temporal resolution of these estimates is often bound

to the temporal sampling strategy employed by the mobile network operator, which solely uses the information on the link75

signal to assure the functioning of the network. Moreover, not all mobile network operators store the same variables describing

the link signal in their network management system. Most commonly, a temporal resolution of 15 minutes with a recording

of the minimum and maximum values (and occasionally mean and/or instantaneous values) during this interval is applied.

Additionally, the method developed by Chwala et al. (2016) allows to actively select any instantaneous sampling method up to

1 s intervals for these networks and is specifically designed to estimate rainfall intensities, in contrast to using the data with the80

sampling strategy chosen by the network operators. For research purposes, data with a high temporal resolution in combination

with averaged values is often preferred, so that the temporal sampling resolution is higher than the dominant timescales of

rainfall. Previously, Leijnse et al. (2008) showed that different sampling strategies together with nonlinearities in the R− k

relationship are the dominating errors when estimating rainfall. For this analysis, Leijnse et al. (2008) used microwave link

simulations based on radar data with a 16 s interval and only studied the effect for 15 minute sampling strategies. Yet, it is85

uncertain how larger variations in sampling strategies affect the computed amount and intensity of rainfall together with the

use of actual microwave link data.

Here, we aim to understand how temporal sampling strategies affect the measured rainfall intensities. To do so, we compare

20 Hz rainfall estimates obtained with 38 and 26 GHz microwave links with rainfall estimates computed with various temporal

sampling strategies. One of these links has actually been employed in an operational CML network. Ultimately, this allows us90
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to isolate errors and uncertainties caused by the sampling strategy from instrumental effects. As a consequence of only having

one sampling strategy set by the mobile network operators, these errors and uncertainties usually cannot be separated due to the

comparison of different instruments, which represent different measurement volumes combined with different measurement

uncertainties. Thus, using this method, we are able to estimate the actual errors and uncertainties due to the sampling strategy.

This could help to estimate the effects of the strategies set by mobile network operators or help to choose an optimal strategy95

when estimating rainfall intensities using CMLs.

2 Methods

2.1 Instrumentation

In this study, we use data published online from van Leth et al. (2018a), who reported on a measurement campaign (see van

Leth et al., 2018b) using three microwave links along a 2.2 km path over the city Wageningen, the Netherlands (Fig. 1). In this100

section, we describe the essential information required for understanding our analysis. For a more elaborate description, we

refer the reader to van Leth et al. (2018a).

4

Figure 1. Map of Wageningen with the path of the links in red. The receiving antennas are at the end labelled “Forum”; the transmitting

antennas are positioned at the end labelled “Biotechnion”. The yellow stars indicate the position of disdrometers along the path. At each

disdrometer location, one disdrometer is located, except at "Forum", which has two disdrometers placed next to eachother. Figure redrawn

after van Leth et al. (2018a) (with © Google Maps).
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We use data from a Nokia Flexihopper transmitting at 38.2 GHz with a bandwidth of 0.9 MHz, which was formerly part

of the cellular communication network operated by T-Mobile NL, and two links built by Rutherford Appleton Laboratories

(RAL) transmitting at 26.0 and 38.0 GHz, with a receiving bandwidth of 4 KHz and transmitting bandwidth of much less than105

1 KHz. All the microwave link signals are sampled at 20 Hz using logarithmic detectors. The employed frequencies for the

Nokia and RAL 38 GHz links are close, hence exhibit similar electromagnetic characteristics, but do not interfere with each

other. However, these devices were found to give a different response, likely due to the Nokia having a filter included in the

internal electronics which reduces the high-frequency fluctuations in the signal, while the RAL has a different antenna cover

than the Nokia, which affects the distribution of water remnants on the cover (see van Leth et al., 2018a). On the RAL cover110

water droplets form once it gets wet, which has a more significant attenuation of signal intensity than the water film that forms

on the Nokia cover as remnant after getting wet. Eventually, these wet antennas cause an additional attenuation of the signal,

which causes an overestimation of rainfall intensities following the R− k relation if not accounted for. The RAL 26 GHz link

is prone to less wet-antenna attenuation than the RAL 38 GHz link.

In this paper we only consider horizontal polarization, since for both the Nokia and the RAL 26 GHz links only this po-115

larization is available. For the RAL 38 GHz link, both horizontal and vertical polarized data are available, but we only show

results for horizontal polarization, due to the insignificant differences between these polarizations in our results and to make a

fair comparison with the other devices. Results for the vertically polarized signal are included in the Supplementary materials.

In this study, we use the disdrometer data to distinguish wet and dry periods and filter out snow, hail, graupel and mixed

precipitation events when comparing the rainfall intensities between the 20 Hz data and other temporal sampling steps. Note120

that it is not our aim to compare the rainfall intensities from the disdrometers with the rainfall estimates from the microwave

links, because we aim to understand the influence of the temporal sampling strategies on estimated rainfall intensities. Along

the 2.2 km path, five OTT Parsivel laser disdrometers were installed in order to compute path-averaged rainfall estimates, of

which we also obtained the post-processed rainfall intensities and precipitation types, i.e., to remove non-liquid precipitation,

from van Leth et al. (2018a). The disdrometers measured raindrop size distributions every 30 s and were post-processed using125

the method of Raupach and Berne (2015), which corrects for instrumental biases. van Leth et al. (2018a) compared rainfall

estimates of the microwave links and the disdrometers and show large additive and multiplicative biases for all instruments.

The RAL links exhibit an additive bias around 2.2 mm h-1, while the Nokia link has an additive bias of 0.6 mm h-1. The

multiplicative bias for all instruments ranges between 1.5 and 1.7.

The microwave links were operational over a period from 22 August 2014 to 8 January 2016, but not all disdrometers were130

operational during the entire period. Therefore, we use the data from the start of April 2015 to the end of December 2015, so

that we have fully operational instruments except for a power outage from 7 to 25 August 2015. By using all the disdrometers

along the path (instead of a single disdrometer), we decrease the uncertainty in the wet-dry classification and incorrect removal

of other precipitation types, such that errors and uncertainties arising in our results are most likely to originate from the

microwave link rainfall estimates.135

To identify relevant precipitation climatologies for our study area, we examine the disdrometer data. Note that the data

presented pertains to a 2.2 km path and not necessarily reflects exactly the same climatology as for the whole country or region.
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This reveals that the average duration of a precipitation event longer than 5 minutes in our dataset is roughly 30 minutes, with

a median duration of 12 minutes (Fig. 2), demonstrating a positively skewed distribution with many short rainfall events and

relatively few longer rainfall events. In this figure two contiguous rainy periods, which are separated by a single 30-second dry140

time interval, are counted as separate events and not combined into a single event.
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Figure 2. Boxplots describing the duration of precipitation events per month in 2015 with orange as median and green as mean duration. The

box edges represent the first and third quartile, and the whiskers are the 10th and 90th percentile. The values are computed using disdrometers

installed along the 2.2 km microwave link path. In these statistics, events shorter than 5 minutes are excluded.

2.2 Rainfall retrieval from microwave links

To identify the influence of temporal sampling on rainfall estimates, we compare rainfall intensities obtained by using various

sampling strategies with high-resolution rainfall estimates. We do this for the three devices sampling a mean, instantaneous,

and minimum and maximum (“min-max strategy”) value per time interval, which mimic various temporal sampling strategies145

by network operators. As sampling time interval we use 1 s, 30 s, 1 min, 5 min, 15 min, 30 min and 60 min. As reference

data, we use rainfall intensities obtained using the 20 Hz sampling of the same device, in order to be able to solely study the

influence of the sampling strategies on the measured rainfall intensities.

We use a relatively straight-forward method to compute the rainfall intensities, to limit the effect of many parameters in the

algorithm. The rainfall measurements are done in a similar fashion as van Leth et al. (2018a) combined with the method of150

Overeem et al. (2016b) for the min-max sampling strategy. This means no corrections on the rainfall estimates, for example

for wet-antenna attenuation. The retrieval algorithm is as follows:

1. Aggregate microwave link power levels to the mean, minimum, maximum and instantaneous value of time intervals: 1

s, 30 s, 1 min, 5 min, 15 min, 30 min and 60 min. For instantaneous sampling strategies, we chose to use the last value

per time interval to estimate the rainfall intensity for the entire time interval, similar to data provided by mobile network155

operators.
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2. For each sampling strategy, including the original 20 Hz data, determine the baseline signal power level for each interval

by selecting the median power level during all dry periods in the preceding 24 h (Overeem et al., 2016b). In the next

step, this baseline power level is used to determine the rain-induced attenuation. For the min-max sampling strategy, the

baseline power level is obtained by averaging the maximum and minimum received power levels, assuming a symmetrical160

distribution of these values, and subsequently computing the median of the preceding 24 h. Of the previous 24 h, at least

1 h should be dry in order to determine a baseline. If all of these time intervals indicate rain, a baseline cannot be

determined, and as such rain intensities cannot be determined. The selection of dry periods is based on disdrometer data.

This method of baseline determination is based on Overeem et al. (2011).

3. Based on the power and baseline levels, compute the specific attenuation of the signal k (dB km-1),165

k =
Pref −P

L
, (2)

in which Pref is the baseline power level, P the received power levels (both in dBm) and L is the path length (km). For

the min-max sampling, the specific attenuation is calculated for both the minimum and maximum attenuation using the

same baseline for both.

4. Convert the specific attenuation to rain rate, using Equation 1. The values for the parameters a and b are the same as170

applied by van Leth et al. (2018a) (Table 1). They obtained these values from non-linear least-squares fits of disdrometer-

derived rainfall intensities and specific attenuations at the frequencies employed by the microwave links combined with

scattering computations. For the min-max sampling, the rain rates using the minimum and maximum attenuation are

calculated separately and are combined into one rain rate in step 6. These values differ from the recommendations by

ITU-R (2005).175

Table 1. Values for the a (mm h−1 dB−b kmb) and b (–) parameters in Eq. 1 specifically derived for the dataset from van Leth et al. (2018a)

and general recommendations by the ITU-R (2005) for 38 and 26 GHz horizontally polarized signals.

a38GHz b38GHz a26GHz b26GHz

van Leth et al. (2018a) 3.83 1.05 7.70 0.93

ITU-R (2005) 2.82 1.13 5.92 1.01

5. Set the computed rain rates during dry periods (based on disdrometer data) to zero. Since we treat the data as if they

originate from a CML network, this implies that if it rains part of a time interval, the whole interval is seen as wet. Also,

for the comparison of all rainfall intensities, we remove snow, hail, graupel and mixed rain events from the data based

on the disdrometer data, since these have a different effect on the signal in comparison to rain.

6. For the min-max sampling strategy, combine the rain rates obtained using the minimum attenuation and maximum180

attenuation following

R = αRmax + (1−α)Rmin, (3)
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in which R is the estimated mean (based on the minimum and maximum rainfall intensities) rainfall intensity, Rmax and

Rmin the rainfall intensities derived from the maximum and minimum attenuations (mm h-1), and α is the parameter

determining the contribution of the minimum and maximum received power levels. In this study, we use an optimized α185

and a non-optimized α of 0.33, as determined for an operational microwave link network in the Netherlands by Overeem

et al. (2011). The optimization of α is done for each device and sampling strategy by comparing the rain rates obtained

through min-max sampling per time interval with the 20 Hz rain rates and selecting the α for which the root mean square

error (RMSE) is lowest in combination with an absolute mean bias error (MBE) smaller than 0.02 mm h-1. Overeem

et al. (2011) used the residual standard deviation for this, which is the same as the RMSE if the MBE is equal to zero.190

For this computation, values of α ranging between 0 and 1 with intervals of 0.001 are used. The 20 Hz intensities are

averaged to the same time interval as the min-max sampled intensity. The RMSE is computed as

RMSE =

√∑
(Robs−R20Hz)2

n
, (4)

in which Robs is the observed rainfall intensity [mm h-1] with the sampling strategy, R20Hz the reference rainfall intensity

with the 20 Hz sampling strategy and n the number of observations. MBE is computed as195

MBE =
∑

Robs−R20Hz

n
. (5)

7. To compare the obtained rain rates for the 20 Hz sampling with the other time intervals, we apply a linear regression

in which the 20 Hz estimates are the independent variable and the estimates from the other sampling strategies are the

dependent variable. To do so, we use again the 20 Hz rainfall intensities averaged to the various time intervals. We

compute the MBE, RMSE, r2, representing the fraction of explained variance, and the slope of the fit (without intercept).200

Note that averaging the 20 Hz rainfall estimates is not the same as the mean sampling, since the averaging occurs in

a different step during the rainfall intensity computation and the R− k relation is nonlinear (Eq. 1). This makes that

the rain intensities obtained using averaged attenuations are different compared to the averaged rainfall intensities. For

example, if a rain event takes place exactly for 30 seconds in an hour with an attenuation of 10 dB km-1 (i.e. on average

0.083 dB km-1 for an hour), this would result in a decrease of the rainfall for the 60-minute estimate in comparison to205

the estimate based on the 30-second time interval:

R̂

R̄
=

akb
60min

akb
30s/120

=
(10/120)1.05

101.05/120
= 0.79, (6)

in which R̄ is the reference averaged rainfall intensity, R̂ the estimated averaged rainfall intensity and the b value is used

for a 38 GHz horizontally polarized device (Table 1). At 26 GHz link, for which b is 0.93, this equation would result in

1.40. Other differences could for example exist between baseline power levels, due to not setting the exact same part of210

the time series to dry as a consequence of time intervals during which it rains only partially (step 5).
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2.3 Comparison with theoretical events

To examine the influence of precipitation climatology on our results, we compare the obtained relationships between device

and sampling strategies to theoretical rain events. We prescribe three types of rain events: 1) a rain event with a constant

intensity of 5 mm h-1, 2) a high-intensity event with a maximum intensity of 40 mm h-1 and declining following an exponential215

function and 3) a low-intensity event, which we compute using three sinusoidal functions (Fig. 3). All events take two hours.

The latter two events resemble two individual events, which we study in Sect. 3. First, we recalculate these events to 20 Hz

power levels using Eqs. 1 and 2, subsequently we add normally distributed noise with a device-specific standard deviation

to these power levels. This device-specific standard deviation is computed by averaging hourly standard deviations for all dry

hours in the dataset. For the Nokia link, this results in a standard deviation of 0.15 dB and for both RAL links in 0.20 dB. Using220

this method, we obtain a similar dataset as van Leth et al. (2018a), so that we can apply the algorithm as described above. We

apply the normally distributed noise for 100 different random states to remove the influence of a single random state on the

comparison. After averaging the statistical metrics of these states, we compare these metrics for the theoretical events with

the dataset from van Leth et al. (2018a) in order to attribute which part of the uncertainties originates from the algorithm and

which part from the actual rainfall variations.225
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Figure 3. Three theoretical rainfall events for estimating the sole influence of the sampling strategies. The constant intensity is 5 mm h-1.

The low-intensity event consists of three sinusoidal waves: R = 1−0.5cos( 2π·t
2

)−0.25cos( 2π·t
0.25

)+0.1sin( 2π·t
0.1

). The high-intensity event

follows the function: R = 40exp(−3t). In these t is the time (h) since the start of the event.
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3 Results

3.1 Influence of temporal sampling on rainfall estimates for individual events

We consider two individual precipitation events to illustrate the influence of temporal sampling on estimating rainfall. Figure

4, a low-intensity event, and Fig. 5, a high-intensity event, include the 1 s, 5 min and 60 min time intervals, to demonstrate the

influence of the sampling methods on individual events. The analysis in Sect. 3.3 also includes the other time intervals.230

When comparing the signals of all devices during the two precipitation events, the largest differences between the Nokia

(a-h) and the RAL links (i-p and q-x) are the reduced wet-antenna attenuation and fluctuations in the signal for the Nokia link.

For example, considering the wet-antenna attenuation, the tail after the high-intensity event, around 11:00, shows 1-2 dB larger

attenuation for the RAL links compared to the Nokia link (Fig. 5a & i). These differences in wet-antenna attenuation for the

Nokia and RAL 38 GHz links are caused by different behaviour of rain remnants on the antenna covers, in the form of a water235

film and droplets, respectively (Fig. 14 in van Leth et al. (2018a)). In general, this causes the wet-antenna attenuation for the

RAL link to be roughly 2 dB higher than for the Nokia link shortly after a rain event. For this specific setup, this would result

in roughly a 4 mm h-1 increased rainfall intensity. The differences in the fluctuations are clearest in the 20 Hz signal for all

devices (e.g., Figs. 4a, i and q). These high-frequency fluctuations in the signal are roughly reduced by 0.5 dB, which is likely

to be caused by the installation of a filter in the internal electronics of the Nokia link. Yet, this does not seem to affect the240

computed rainfall intensity using the min-max sampling strategy. Compared to the RAL 38 GHz link, the RAL 26 GHz link

shows slightly more fluctuations.

During the event on 24 November 2015, the baseline changes slightly during the precipitation event. In the preceding 24

hours to this event, the signal intensity fluctuates combined with precipitation events. As a result, during the 12 hours of the

event the baseline algorithm computes slight changes in power level, as the initial baseline power levels are not based on the245

same power levels as the final baseline power levels. We expect that this occurs throughout the entire dataset and not only for

this specific event.

When comparing the sampling strategies, the instantaneous sampling strategy shows the largest sensitivity of the estimated

rainfall intensities to the sampling time interval. Especially for the longest time intervals with the RAL 26 GHz and 38 GHz

links, the intensities derived with instantaneous sampling show major fluctuations, which are not necessarily fully representative250

for the entire interval. This mostly holds for the event on 24 November, as the signal-to-noise ratio of the event on 21 June is

relatively large. The min-max sampling strategy shows a large sensitivity to the extreme values, either caused by a rainfall event

or an outlier in signal intensity. This especially holds for the maximum attenuation, as the minimum attenuation is bounded at

zero (i.e., no attenuation), while the maximum attenuation could theoretically attain very large values (e.g., more than 20 dB in

Fig. 5d and l around 10:00). Overall, this seems to cause that the min-max sampling strategy is mostly prone to overestimations,255

especially for the higher rainfall intensity event on 21 June. In general, the mean sampling seems to represent the 20 Hz rainfall

intensities best, though with some minor differences between the sampled time intervals.
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Figure 4. Comparison of received (solid) and baseline (dashed) power levels (a-d, i-l, q-t) and retrieved rain rates (e-h, m-p, u-x) during a

low-intensity precipitation event on 24 November 2015 obtained with the Nokia (a-h), RAL 38 GHz (i-p) and RAL 26 GHz (q-x) microwave

links for all sampled variables and the 1-second, 5-minute and 60-minute time intervals. Grey areas indicate dry periods based on disdrometer

data.
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Figure 5. Comparison of received (solid) and baseline (dashed) power levels (a-d, i-l, q-t) and retrieved rain rates (e-h, m-p, u-x) during a

high-intensity precipitation event on 21 June 2015 obtained with the Nokia (a-h), RAL 38 GHz (i-p) and RAL 26 GHz (q-x) microwave links

for all sampled variables and the 1-second, 5-minute and 60-minute time intervals. Grey areas indicate dry periods based on disdrometer

data.
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3.2 Theoretical events

Before analysing all rain events in the whole Wageningen dataset, we examine the theoretical events. This allows us to deter-

mine which part of the uncertainties originates from the rainfall retrieval algorithm and which from instrument. We compare the260

statistical metrics of three theoretical rain events to which we added three levels of noise, so that these resemble the microwave

link signals of the three devices (Fig. 6). Additionally, we compare these with the statistical metrics of the same theoretical

events, but without the added noise, which resemble a 38 and a 26 GHz horizontally polarized link, in order to estimate the

influence noise has on our comparison (Fig. 7).

The theoretical events demonstrate the sensitivity of instantaneous sampling to individual events, for both the noisy and265

noiseless signals, especially for longer time intervals. This sampling shows an erratic behaviour for these intervals, reflecting

the strong influence of temporal variability on this sampling strategy. For the high-intensity event, the MBE and slope strongly

decrease for 1-minute intervals and longer, while the RMSE strongly increases. At these timescales the signal changes sig-

nificantly, due to the decrease in rainfall intensity being relatively large compared to the noise. The peak attenuation in this

case is roughly 21 dB, while the standard deviation of the noise ranges roughly between 0.15 and 0.20 dB. This illustrates the270

sensitivity of instantaneous sampling to signal fluctuations as a consequence of rainfall variability.

The RMSE for the theoretical events with and without noise barely increases for longer time intervals, except for instanta-

neous sampling with the high-intensity event. Similarly, r2 is close to 1 and independent of interval length for the theoretical

events. The same also holds for MBE and slope. Sampling a mean value or min and max values per time interval also seems to

have a minor influence on the theoretical events, since the noiseless events, show no difference between the mean and min-max275

sampling strategy. Generally, this shows that each of the sampling strategies is capable of producing correct rainfall estimates,

especially for the shortest time intervals. However, the influence of noise on rainfall intensities cannot be neglected when using

CMLs to measure rainfall.

It should be noted that in Section 3.1, differences in baseline power levels between sampling strategies and wet-antenna

attenuation clearly affected the rainfall intensity estimates. These mechanisms are not included in these theoretical events.280

Differences in baseline power levels are only slightly reflected in the theoretical events as caused by the added noise, which

might slightly affect the median signal intensity for the computation of the baseline power levels.
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Figure 6. Statistical metrics as function of time interval for three theoretical rain events (Fig. 3) for all sampling methods (line style) and

added noise levels that resemble the three devices (line color).
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Figure 7. Statistical metrics as function of time interval for for a theoretical low intensity and high intensity rain event (Fig. 3) for all sampling

methods (line style) for 38 GHz and 26 GHz horizontally polarized noiseless devices (line color).

3.3 Influence of temporal sampling on rainfall estimates for individual events

In this section, we examine how the rainfall estimates are affected by all sampling methods considered for all combinations

of methods and time intervals. Figure 8 shows an example scatter plot and corresponding statistics for a time interval of 15285

minutes. We present the statistical metrics (MBE, RMSE, r2 and the slope of the linear regression line through the origin) for

all considered time intervals in Figure 9. The corresponding scatter plots (Figs. S1 to S4) are provided in the Supplementary

materials. In these scatter plots, we compare the rainfall estimates for a specific device, method and time interval with the 20

Hz rainfall estimates obtained using the same device.
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Figure 8. Comparison of rainfall intensities derived with mean sampling and 15 min time interval (y-axis) versus time-averaged rainfall

intensities computed with the 20 Hz data (x-axis) for the Nokia Flexihopper microwave link. The red dashed line is the 1:1 line and the black

line represents the best linear fit through the origin of which the slope is reported in the statistics box.

When examining the statistical metrics for all sampling methods, it is clear that the mean sampling strategy generally out-290

performs the other sampling methods in terms of RMSE and r2. The instantaneous sampling strategy is generally outperformed

by the min-max sampling strategy. Regarding MBE, the min-max sampling outperforms mean sampling, though it should be

noted that part of the optimization of α was based on the MBE (next to the RMSE) for the entire dataset (Sect. 2). This also

causes all the min-max lines in Figure 9a to be close to zero. The non-optimized min-max sampling strategy performs slightly

worse than the optimized strategy, but no major significant differences between both occur, except at the largest time intervals.295

For the shortest time intervals, absolute differences in RMSE and r2 between mean and min-max sampling are insignificant

(smaller than 0.1 mm h-1 in terms of RMSE), but an increase in time interval length causes the performance of mean sampling

to decrease less than for the min-max sampling, resulting in an absolute difference between the mean and min-max sampling

in the order of 0.5 - 1.5 mm h-1 for the RMSE for the Nokia and RAL links.

The mean sampling shows a decrease in the slope of the regression line, as the length of the time interval increases, especially300

for the Nokia link, culminating in a value of 0.86 for a 60-minute time interval, while we would have expected it to stay equal

to 1, as roughly occurs for the RAL links. We attribute this to two opposing causes for error at large time intervals with mean

sampling. The first is the reducing influence of the power law on the measured rainfall intensities with increasing time interval,

due to the lower average attenuation for longer time intervals (step 7 in Sect. 2.2). The second is the wet antenna attenuation,

which reduces significantly on hourly timescales due to the drying of the antenna cover. In the 20 Hz data, any erroneously305

estimated rainfall due to wet antennas has been filtered out (i.e., set to 0 mm m-1) based on the path-weighted disdrometer data

indicating dry weather, while for long time intervals the wet-antenna attenuation is included in the computation of the rainfall

intensity for the mean sampling, because of the antennas still being wet during dry weather, causing an overestimation of the
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Figure 9. Statistical metrics as function of time interval for all devices (line color) and sampling methods (line style). The values for the

metrics are obtained from Figs. S1 to S4.

rain rates. For the Nokia link, the influence of wet-antenna attenuation is reduced, which results in an increased underestimation

for longer time intervals, in contrast to the RAL 38 GHz link. The RAL 26 GHz link exhibits less wet-antenna attenuation than310

the RAL 38 GHz link, but somewhat more than the Nokia link. Moreover, at this frequency the exponent of the R− k relation

is below 1, so that this would cause an overestimation instead of the underestimation for the 38 GHz links (step 7 in Sect. 2.2).

Still, also the mean sampling at this frequency results in an overall slope of the linear regression line through the origin below

1, though minor, which suggests that the mean sampling might have a slight tendency to underestimate the rainfall intensity.

Overall, this shows the potential influence that even mean sampling can have on rainfall estimates, although it is relatively315
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small in comparison to the other sampling methods. We attribute a large part of these differences to wet-antenna attenuation

and differences in estimated baseline power levels, as the behaviour of these statistics is not reflected in the theoretical events

(Fig. 6 versus 9).

For instantaneous sampling with short time intervals, the RMSE is larger than for the mean sampling method, being 0.69 mm

h-1 versus 0.17 mm h-1, respectively, for the RAL 38 GHz link at a 30 s time interval. Yet, this spread results in a relatively low320

MBE of 0.01 mm h-1 and relatively high r2 of 0.99, suggesting a symmetric distribution of the residuals around the reference

(Fig. 9). For both RAL links, this distribution appears to be even present at the longest time interval (Fig. 10b). We would

have expected that the rainfall intensity measured at the end of a long interval does not provide any information on the other

rainfall intensities during that interval, given the 30 min average duration of rainfall events in our data. The Nokia link behaves

more as expected (Fig. 10a), as the spread is larger, also resulting in a lower r2, i.e., 0.33 versus 0.64, at a 60 min time interval325

for instantaneous sampling. The erratic behaviour of the instantaneous sampling in the theoretical events is not reflected here.

We expect that this caused by the large sample size, which reduces these uncertainties. Moreover, the behaviour for the high-

intensity event is not reflected here either, due to the fact that cases with similarly high rainfall intensities in the Wageningen

data are more scarce than the other events.

Based on the individual events, it seems that the majority of these differences are related to the variations in rainfall intensity,330

i.e., 30 min average duration (Fig. 2), in combination with wet-antenna attenuation. For the shortest time intervals, the rainfall

intensities, and thus measured attenuations, do not vary much in these few seconds, which results in relatively good scores. For

the longer time intervals, the RAL devices are still wet, as these were found to have an average drying time of the order of 20

minutes (van Leth et al., 2018a), resulting in higher estimated rainfall intensities for both the averaged 20 Hz measurements

and the instantaneous sampling. The Nokia antenna covers are already mostly dry after a few minutes (van Leth et al., 2018a),335

such that the estimated rainfall intensity gives very little information on the preceding rainfall intensities, resulting in the lowest

MBE for the Nokia link. We suspect that this role of wet-antenna attenuation also causes the MBE to be positive for all devices

compared to the other sampling strategies.
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Figure 10. Comparison of rainfall intensities derived for the instantaneous 60-min time intervals for the Nokia Flexihopper and the RAL 38

GHz microwave links versus time-averaged rainfall intensities computed with the 20 Hz data of these devices. The red dashed line is the 1:1

line and the black line represents the linear regression line through the origin of which the slope is reported in the statistics box.

For the min-max sampling with an optimized α, the role of the minimum attenuation increases with time interval, i.e., α

decreases from just below 0.5 to around 0.2 (Fig. 11). For the shortest time intervals, this points to a roughly symmetrical340

distribution of the fluctuations around the mean. For the longer time intervals, this suggests a positively skewed distribution of

the fluctuations with relatively many outliers to the maximum attenuation. For the non-optimized min-max sampling, where

with increasing time intervals the maximum attenuation becomes increasingly dominant, this results in an increasing slope of

the fit (Figs. S1 to S4).

For the 15-minute min-max sampling strategy, the optimized values of α for the links range between 0.30 and 0.35. This is345

close to the default RAINLINK value (Overeem et al., 2016b), which uses 0.33 for the contribution of minimum attenuation

and maximum attenuation. This is also reflected in the RMSE, MBE, r2 and slope of the fit (Figs. S1 - S4). This shows that

for microwave links in similar frequency domains and precipitation climatologies, this default value is a good estimate when

using 15-minute minimum and maximum signal intensities.

Moreover, occasionally the minimum attenuation is set to 0 dB km-1, due to the maximum received power (resulting in350

minimum attenuation) being higher than the baseline power level, especially during low intensity events. Part of this is caused

by the assumption of the median of the average of the minimum and maximum received power levels representing the baseline

is not always valid, partly due to a skewness towards minimum power levels. For example, between 9:00 and 11:00 in Fig.

4t for the hourly time intervals, the maximum attenuations are constant, while the minimum attenuation changes between the

intervals 9:00-10:00 and 10:00-11:00. Still this results in a constant rainfall intensity (Fig. 4x). Combining this with the fact355

that the minimum received power level (resulting in the maximum attenuation) nearly always is significantly less than the

baseline power level, a change in slope is induced at low rainfall intensities for all devices with both the optimized and default

min-max sampling (Fig. 12). For rainfall intensities below 1 mm h-1, the maximum power levels are higher than the baseline,

so that the minimum attenuation is set to zero. The minimum power levels are significantly lower than the baseline and are

treated as is. In the rainfall intensity computation, both attenuations are both treated in similar manner, giving too much weight360
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to the maximum attenuation, causing an overestimation of the rainfall intensity. For slightly higher precipitation intensities, the

maximum power levels are still close to the baseline, so that barely any increase in rainfall intensity in the min-max sampling

is computed, while the 20 Hz rainfall intensity estimates do increase. When the rainfall intensity increases even further, both

the minimum and maximum received power levels are lower than the baseline, so that the min-max sampling method can be

used the way it has been designed to.365
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Figure 11. Optimized fractional contribution of the maximum and minimum attenuation, α, as function of time interval for each device for

the optimized min-max sampling method. The dashed black line represents the default RAINLINK value, being 0.33. The data is based on

Figures S1 to S4.

20

https://doi.org/10.5194/egusphere-2023-1971
Preprint. Discussion started: 13 September 2023
c© Author(s) 2023. CC BY 4.0 License.



0 2 4 6 8 10
R20Hz [mm h 1]

0

2

4

6

8

10

R m
in

m
ax

,o
pt

 [m
m

 h
1 ]

MBE = -0.02
RMSE = 0.83
r2 = 0.97
Slope = 0.95

Figure 12. Comparison of rainfall intensities derived for min-max sampling at a 5-minute time interval (using an optimized weight) versus

time-averaged rainfall intensities computed with the 20 Hz data for the RAL 26 GHz microwave link. The red dashed line is the 1:1 line and

the black line represents the linear regression line through the origin of which the slope is reported in the statistics box.

When focusing on the influence of the signal frequency on the rainfall estimates, the RAL 26 GHz link shows a larger RMSE

and lower r2 for the instantaneous and min-max sampling in comparison to the RAL 38 GHz link (Fig. 9). For both sampled

variables, the RMSE is roughly constantly 0.1 to 0.3 mm h-1 higher, while the r2 only differs at the longest time intervals around

0.1 to 0.2. These differences can predominantly be attributed to the difference in frequency, which causes different exponents

in the R− k relation and minor differences in wet-antenna attenuation, as the devices do not contain any other significant370

differences. However, these differences in behaviour are of a smaller magnitude than the differences between the Nokia and the

RAL 38 GHz links. Overall, this indicates that a reduced duration of wet-antenna attenuation and a filter reducing the signal

fluctuations can significantly reduce the influence of the selected temporal sampling strategy.

Also a general comparison between the theoretical events and all rain events in the dataset reveals the influence of wet-

antenna attenuation on the performance of the rainfall retrieval algorithm. The increase of RMSE with longer time intervals375

found for all rain events is not reflected in the theoretical events (only minor for the min-max sampling). As discussed, we

expect this difference to be caused by the influence of wet-antenna attenuation on the RMSE. Moreover, the wet-antenna atten-

uation seems to have a major influence on the estimated rainfall intensities for the individual events in Sect. 3.1. Additionally,

differences in baseline power levels between sampling strategies could play a role here. These differences in the baseline in the

dataset vary due to the differences in wet and dry periods between sampled intervals and strategies, and also due to longer term380

changes in power levels (e.g., as a consequence of temperature). This shows that the performance of the sampling strategy and

rainfall retrieval algorithm is largely dependent on the wet-antenna attenuation and differences in baseline power levels. This

will be more elaborately discussed and put into context with previous studies in Sect. 4.

21

https://doi.org/10.5194/egusphere-2023-1971
Preprint. Discussion started: 13 September 2023
c© Author(s) 2023. CC BY 4.0 License.



4 Discussion

This study aimed to determine the influence of temporal sampling strategies on measuring rainfall using microwave links. To385

do so, we resampled a 20 Hz signal to various temporal sampling strategies, partly mimicking sampling strategies employed

by mobile network operators, and compared the resulting rainfall intensities with averaged 20 Hz rainfall intensities. This way,

we were able to exclude the instrumental bias and uncertainty from the total bias and uncertainty, and focus on comparing the

influence of the temporal sampling strategies.

Our results allow to estimate the source of error for estimated rainfall intensities originating from the applied sampling390

strategy and puts rainfall estimates of previous and future studies in perspective in relation to their reference data. When

examining the influence of time interval on estimating rainfall intensity, as expected, an increase in sampled time interval

reduces the performance of the resampled rainfall estimates compared to the 20 Hz estimates. For the shortest intervals, the

performance, 1 s to 1 min, often does not vary largely with respect to the reference, especially when compared to the longest

intervals. An increase in resolution does not necessarily add much more information on the rainfall intensity for these short395

intervals, due the generally limited variability in rainfall intensity for these intervals. As described by de Vos et al. (2018), the

performance of the rainfall retrieval algorithm is strongly dependent on the employed temporal sampling strategy. Moreover,

Leijnse et al. (2008) stress the importance of sufficient sampling, which allows to cover the temporal behaviour of a rain event.

For example, considering that a precipitation event in our dataset takes on average 30 minutes, the commonly used 15-minute

sampling interval would undersample an average precipitation event, which is also reflected in our analyses, showing that the400

performance for almost all sampling methods decreases significantly from around 1 to 5 minutes and onwards.

As expected, a comparison between the considered sampling methods demonstrates that mean sampling generally outper-

forms the other methods. For the shortest time intervals, min-max sampling, especially the optimized version, performs roughly

equal to mean sampling. For longer time intervals, the performance decreases, as the minimum and maximum attenuation are

no longer representative for the average precipitation during the interval. Also, the non-optimized min-max sampling strategy405

performs relatively well, but a bit less than the optimized version. This decay in performance is also partly reflected in the

statistical metrics of the high-intensity theoretical event, but not for the constant and low intensity event, partly caused by the

still fairly constant intensity of the low intensity event. Additionally, the min-max sampling contains a change in slope at low

rainfall intensities at longer time intervals, which we expect to be caused by the baseline level selection (i.e., the median of the

average of the minimum and maximum received power levels during the dry hours preceding a rain event). This method for410

baseline determination causes the minimum attenuation (i.e., maximum power levels) during the interval to be higher than the

baseline at low rainfall intensities and be set to zero, which interferes with the algorithm as it was designed. This causes an

offset when using min-max sampling for low rainfall intensities.

Moreover, the minimum and maximum sampling strategy is mostly prone to overestimations of the rainfall intensity, espe-

cially for longer time intervals. For both the optimized and non-optimized sampling strategy, the residuals around the 1:1 line415

are asymmetrically distributed, especially for longer time intervals. In general, underestimations of rainfall intensity are fre-

quently present but relatively minor, while an overestimation happens less frequently but often has a relatively large magnitude.
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This is either caused by short high-intensity rainfall intensities during a time interval or a short reduction in signal intensity,

which causes a relatively large maximum attenuation, such that the estimated rainfall intensity overestimates the 20 Hz rainfall

estimates.420

The instantaneous sampling strategy performed surprisingly well for the shortest time intervals. For longer time intervals, es-

pecially 30 and 60 minutes, the performance is mostly related to the amount and duration of wet-antenna attenuation combined

with the average duration of a precipitation event in our dataset. For a device with a relatively short duration of the wet-antenna

attenuation, the Nokia link, the r2 was significantly less than for a device with relatively long-lasting wet-antenna attenuation,

the RAL 38 GHz link. However, it is important to note that the high r2 in that case is not caused by the measurement of425

rainfall, but solely due to the fact that for long time intervals wet-antenna attenuation is interpreted as rainfall in the algorithm.

Potentially, an improvement in performance of the instantaneous sampling strategy could be found in adapting the timing of

the time intervals, so that the values of the received power levels represent the middle of the intervals. Intuitively, especially

for relatively large changes in rainfall intensity during a time interval, it seems that these values could be more representative

for rainfall intensities than the last value of the interval.430

Previous studies demonstrated the performance of various sampling strategies for measuring rainfall with CML networks.

Our results are in line with Pudashine et al. (2021), who show that the min-max sampling strategy only slightly outperforms

the mean sampling strategy, but in most cases performs similarly. At a 15 min sampling time interval, de Vos et al. (2019)

demonstrate that min-max sampling generally outperforms instantaneous sampling in the Netherlands. Ostrometzky et al.

(2017) show that min-max sampling combined with the quantization effect (i.e., the discretization of the signal intensity) can435

lead to significant biases for rainfall retrieval. Leijnse et al. (2008) compared 18 Hz sampling, averaged 15-minute sampling and

instantaneous 15-minute sampling methods with each other (together with simulated microwave link data based on 15-second

radar data) and showed the limitations of the instantaneous sampling compared to the other two methods. These findings are in

line with our results and confirm that the differences are not solely caused by instrumental biases between the microwave links

and the used reference instrument (e.g., rain gauge or radar).440

Our study shows the significant influence of wet-antenna attenuation on the performance of sampling strategies, especially

with increasing sampling intervals. The rainfall intensities measured with the Nokia link, which is affected only during a

relatively short period by wet-antenna attenuation, were less affected by the temporal sampling strategy than the RAL 38 GHz

link, a device transmitting in the same frequency domain but with an increased wet-antenna attenuation effect. An additional

difference between these devices is the reduced signal fluctuation in the Nokia link, likely caused by an internal filter. However,445

these differences do not have an influence of the same order of magnitude on the raw signal. Where the filter causes the

fluctuations to reduce roughly by 0.5 dB, the additional wet-antenna attenuation for the RAL is roughly 2 dB higher. Therefore,

we attribute the largest differences between the Nokia and RAL 38 GHz links to the difference in wet-antenna attenuation.

This is confirmed when studying the statistical metrics of the theoretical rain events and comparing these with the actual rain

events. The simulated Nokia and RAL links do not show significant differences for the theoretical rain events. The implemented450

differences in noise between the theoretical links do not result in differences between the statistical metrics similar to the actual

events for the two devices in any of the theoretical rainfall events. A comparison between theoretical events with and without

23

https://doi.org/10.5194/egusphere-2023-1971
Preprint. Discussion started: 13 September 2023
c© Author(s) 2023. CC BY 4.0 License.



noise shows that the addition of noise has a significant contribution to the rainfall estimates, especially for the instantaneous

sampling strategy at longer time intervals. The most significant differences between the theoretical events and the actual events

can be found in wet-antenna attenuation and differences in baseline power levels between sampling strategies, which shows the455

importance of these two mechanisms on rainfall estimates. Additionally, it should be noted that the duration of the theoretical

events is not equal to the average duration of a rainfall event in the Wageningen data (2 h and roughly 30 min, respectively),

but was chosen to resemble the individual events. However, we do not expect this mismatch in timescales to have a significant

effect on the statistics of the theoretical rain events. Overall, this shows that knowing the attenuation caused by a wet antenna

and the total drying duration would be beneficial when estimating rainfall using microwave links. Additionally, it would create460

more need to adjust for the instrumental bias.

Different algorithms to correct for wet-antenna attenuation exist. Kharadly and Ross (2001) developed a model allowing to

correct for wet-antenna attenuation, which was extended by Minda and Nakamura (2005) to be able to cope with the drying of

antennas. Schleiss et al. (2013) first experimentally studied the role of wet-antenna attenuation on a 38 GHz microwave link

signal during and after a precipitation event and showed that the attenuation increases exponentially during the first part of a465

rain event towards a maximum of 2.3 dB and also decreases exponentially afterwards. Subsequently, they proposed a model

applicable without the need for additional measurements. In parallel, Overeem et al. (2013) also found a value of 2.3 dB for

the wet-antenna attenuation as an average for a complete telecom network in the Netherlands. Subsequently, Overeem et al.

(2016a) applied this value as a constant for correcting attenuation due to wet antennas for each microwave link. Graf et al.

(2020) found that for a telecom network in Germany a correction based on rainfall intensity outperformed a method based on470

the time during and after a precipitation event. Leijnse et al. (2008) propose to use a more physics-based model to compute the

wet-antenna attenuation, which uses signal frequency, antenna cover properties and rainfall intensities. Note that algorithms are

applied irrespective of the number of wet antennas (0, 1 or 2). It may even be raining along the CML path, whereas antennas

remain dry.

Using 20 Hz data as reference data to compare the estimated rainfall intensities has as advantage that the direct instrumental475

bias is excluded in our analysis. These instrumental biases are included in the comparisons done by van Leth et al. (2018a) and

similar to our comparison between the 20 Hz estimates and the disdrometer (Sect. 2). Zinevich et al. (2010) describe various

errors and uncertainties that arise when comparing rainfall estimates from commercial microwave links with rain gauges, for

example uncertainty in the drop size distribution, wet antennas or baseline variations. Also, Leijnse et al. (2008) describe

similar influences of these uncertainties and stress the need to include all potential error sources in an analysis. Our results480

and those from van Leth et al. (2018a) suggest that these uncertainties, especially wet-antenna attenuation, baseline variation

and the non-linear effect of the power law, even affect the performance of the rainfall estimates when using the same device as

reference data.

Additionally, we illustrate that the magnitude of these additional biases could depend on the selected sampling method. These

biases can be separated into a directly affected part and an indirect part. Rainfall intensities are most often directly affected485

when choosing an instantaneous sampling method, especially for longer time intervals. Moreover, wet-antenna attenuation

and the role of the exponent in the R− k relation also seem to play a direct role in the performance of the selected sampling
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strategy, especially when considering the individual rain events and compare the theoretical events with the whole dataset.

Indirectly, we suspect that observed biases, especially between sampling strategies, can occur mostly due to variations in

baseline power levels between selected sampling methods. The latter group is hard to consider beforehand and will most often490

be an unavoidable source of uncertainty for other studies. In general, our efforts allow future studies to focus on estimating the

uncertainty of their observed rainfall intensities using microwave links and uncover the instrumental bias of these links.

When extrapolating our results to CML networks, first of all it should be noted that not all CML networks contain similar

frequencies and link lengths. Next to a change in the parameters for the R−k relationship, our results show a slightly increased

RMSE and reduced r2 for the RAL 26 GHz link compared to the RAL 38 GHz link. These devices operate similarly, except495

at a different frequency, which results in different a and b parameter values in the R− k relationship. For 38 GHz, b is larger

than 1, while for 26 GHz, b is smaller than 1. Also, between the devices a minor difference in wet-antenna attenuation can

be observed, which could be a consequence of differences in frequency. Therefore, we attribute the observed differences to

differences in frequency and wet-antenna attenuation (possibly as a consequence of frequency).

The International Telecommunication Union (ITU-R, 2005) reports values for the a and b parameters, though several studies500

found location dependent parameter values. Leijnse et al. (2007b) showed differences up to 10% in the b parameter compared

to the ITU recommendations, when deriving these parameters using raindrop size distributions measured in the Netherlands

by Wessels (1972). In this study, we used the a and b parameter values as reported by van Leth et al. (2018a), who determined

these based on the five disdrometers along the path. Yet overall, Chwala and Kunstmann (2019) illustrated that the a and b

parameters are relatively independent of the drop size distribution at low frequencies, especially below 40 GHz. Additionally,505

Berne and Uijlenhoet (2007), Overeem et al. (2011) and Overeem et al. (2021) demonstrate that using a and b parameter values

which are not specifically calibrated to the area of application only results in minor errors in the rainfall estimates. This is likely

a consequence of the near-linear relation between attenuation and rainfall intensity.

Other differences between our results and actual CML networks can be found in the difference in polarization. Most mi-

crowave links in CML networks are vertically polarized, instead of the horizontal polarization that we study. For this specific510

study, however, there are no significant differences between the vertical and horizontal polarization of the RAL 38 GHz link,

probably due to the fact that our reference data, i.e., the 20 Hz estimates, have the same polarization, and thus attenuation at

the same frequencies. Network operators choose for the vertical polarization, due to the oblate raindrop shape which induces

an increased attenuation for horizontal polarization compared to the vertical polarization. For other purposes than this study, it

can be important to consider the polarization of the device.515

Furthermore, CML networks often employ a signal power quantization of 1 dB, while the data we use in this experiment

has been designed to prevent the power quantization effect on the rainfall estimates. Leijnse et al. (2008) demonstrate that this

power quantization can have a significant effect on the estimated rainfall intensities when using CML networks, especially

for low rainfall intensities. Chwala and Kunstmann (2019) show that the quantization effect limits the minimal detectable

rainfall intensity. Future studies could complement our study by focussing on the influence of power quantization on the520

rainfall estimates using the same dataset. Additional uncertainties arise from the wet-dry classification. We used disdrometer

observations to classify the weather as dry or wet, while these nearby in-situ data are usually not available in a CML network,
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which could for example result in baseline variation uncertainties. For example, Messer and Sendik (2015) provide an overview

of various wet-dry classifications and how this affects the baseline power levels.

5 Conclusions525

In this study, we examined the influence of temporal sampling strategies on estimating rainfall using microwave links based on

a dataset containing three different microwave links obtained by van Leth et al. (2018a). We compared the mean, instantaneous

and min-max sampling strategies and various time intervals ranging from 1 s to 60 min with with 20 Hz rainfall estimates of

the same device, allowing us to exclude the direct instrumental bias in this comparison. Some of the applied sampling methods

are also employed in current CML networks. Moreover, we used disdrometer data for a wet-dry classification to determine the530

baseline power levels.

In general, our results show that an increase in the duration of the sampled time interval reduces the performance of the

resampled rainfall estimates. The instantaneous sampling method is most sensitive to this dependency on sampling interval,

while the mean sampling is most robust. This is also in line with expectations, as the instantaneously sampled power levels at

longer time intervals do not contain any information on the rainfall during the preceding time interval, so only describe what535

occurs exactly at the moment of sampling. However, for the mean sampling still differences with respect to the reference can

occur due to the exponent in the R−k relationship being different from one. For the shortest time intervals, both instantaneous

and mean sampling perform roughly equal, except that instantaneous sampling shows a larger RMSE than mean sampling.

Similarly, for the shortest time intervals, min-max sampling performs roughly the same as mean sampling, but with an in-

crease in time interval the performance of min-max sampling shows a slightly larger decay than mean sampling (but smaller540

than instantaneous). For the common 15-minute sampling strategy and the former Nokia CML, mean and min-max sampling

strategies clearly outperform instantaneous sampling. To a lesser extent, the mean sampling strategy outperforms the min-max

sampling strategy, except for the MBE value, due to the optimization based on the MBE.

The partitioning between the minimum and maximum attenuation, represented by α in the rainfall retrieval algorithm, shows

a decrease (i.e., more influence of the minimum attenuation) with an increase in time interval when optimizing this parameter,545

as for longer time intervals the maximum attenuation is less representative for that entire interval. For all min-max sampling

time intervals, a change in slope occurs roughly below 2 mm h-1, which induces a positive offset for these low intensities when

employing a min-max sampling method. Generally, this sampling strategy is mostly prone to slightly underestimate or largely

overestimate individual rainfall intensities, which on average results in a relatively good fit. The large overestimations are

caused by the sensitivity of the maximum attenuation to incidental high attenuations, either as a result of short high-intensity550

rainfall episodes or due to an outlier in maximum attenuation.

When comparing devices, the Nokia Flexihopper link, which was formerly part of a CML network, transmitting at 38.2

GHz, outperforms the other devices. This device mostly varies from the other two devices, the RAL 38 and 26 GHz links, in

terms of reduced magnitude and duration of wet-antenna attenuation and contains an internal filter reducing signal fluctuations.

Of these, the wet-antenna attenuation seems to dominate over the reduced noise, so that we attribute a significant part of the555
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differences between the Nokia Flexihopper and RAL 38 GHz links to the wet-antenna attenuation. The RAL 38 GHz device

is specially sensitive to wet-antenna attenuation, which makes that even for long time intervals the RAL 38 GHz link still has

a relatively high r2 compared to the Nokia link. If we compare the RAL 38 GHz link to the 26 GHz link, the RMSE and r2

are higher and lower, respectively, for the 26 GHz link. This is mostly caused by the somewhat increased uncertainty for the

RAL 26 GHz link, which we attribute to the difference in frequency. Also, the difference in exponent of the R−k relationship560

between 26 GHz (b = 0.95) and 38 GHz (b = 1.05) could contribute to the found differences.

Additionally, a comparison of the results with theoretical events reveals the influence of wet-antenna attenuation and possibly

variations in baseline power levels between sampling strategies. In these theoretical events, the minor differences in statistical

metrics between the signal mimicking the Nokia link and that mimicking the RAL 38 GHz link can be attributed to noise

levels. In general, even between all the sampling strategies, minor differences occur for the theoretical events. Other processes,565

of which wet-antenna attenuation being the most significant, are excluded in these theoretical events. This illustrates the sig-

nificant influence wet-antenna attenuation can have on the rainfall estimates, independent of the selected sampling strategy. On

individual rainfall event levels, additional differences in rainfall estimates can arise due to variations in baseline power levels

between devices and sampling methods. Overall, our study illustrates the influence a selected sampling strategy and related

effects can have on the estimated rainfall intensity using microwave links, but does leave the instrumental bias to consider for570

future studies.
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